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Goodman has recently studied certain variation diminishing properties of
Bernstein polynomials on triangles. Introducing analogous definitions for the varia­
tion of a trivariate function, we study in the present paper corresponding results for
the Bernstein polynomials defined on a tetrahedron. We have also extended these
results to arbitrary dimension. 1994 Academic Press. Inc.

1. INTRODUCTION

Goodman [3, 4J has recently studied certain variatIOn diminishing
properties of Bernstein polynomials on triangles. For a bivariate suitably
smooth function! defined on a triangle T, he introduced the following
definitions as analogues of total variations V(g, [a, b]) and Vdg, [a, bJ)
= V( g', [a, b]) of a univariate function g defined on [a, b] and its
derivative g':

V(f, T) = t IV!I dx,

Vdf, T) = t (IVj'112 + IVj'212) dx.

(1.1 )

(1.2 )

Here x = (x I' X 2) E T and V! denotes the gradient off, while j'J denotes the
partial derivative of ! with respect to Xj' j = 1, 2. For a function! which
does not belong to C 2 (T) but has discontinuities in the first partial
derivatives across a certain line segment t, the variation of! over twas
also defined in [3] by

(1.3)
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where /1 and /2 denote the restrictions of / to either side of t. Then for a
function / which is C2 on T except for having discontinuities in the first
derivatives across certain line segments t I' ... , t m in T, its variation over T
was defined by

m

V 1Cf,T)=Vlf,T-(t l ut 2 .. ·utm))+L VI(f,tJ (1.4)
j~ 1

We denote the class of all such functions by D 2 (T). It has been shown in
[3] that for any function / defined on T,

and

V(B,,(f), T) ~ (2n/(n + 1)) V(!", T), (1.5 )

(1.6 )

where B,,(f) and!", respectively, denote the nth Bernstein polynomial and
nth Bezier net corresponding to / on T.

In a subsequent paper [4], Goodman has considered a generalization of
( 1.2) by defining

(1.7)

where S is a seminorm on 1R 3 andf~,x} denotes the second partial derivative
of /with respect to Xj' X j • For a function having discontinuities in the first
derivatives across a line segment t, the variation over t has been defined
by

Vs(f, t) = S(/l2, /lV, v2
) f IV/I - V/2 1 dx,

"
(1.8 )

where (/l, v) is a unit vector orthogonal to t (cf. [4, p. 299]). Then given
a function / E D 2 ( T), Vs (f, T) has been defined as

m

Vs(f,T)=VsCf,T-(t1u ... utm))+L VS(f,t i )· (1.9)
i~ 1

It may be mentioned here that if we consider S(x) = (xi + 2x~ + X~ )1/2,

then Vs(f, T) reduces to VI(f, T), while S(x)= IX I +x 3 1 corresponds to
Vj*(j, T) introduced by Chang and Hoschek [I].
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Using the foregoing definitions, Goodman has obtained the following
result: For any n ~ 1 and any function I defined on T,

(1.10)

Introducing analogous definitions for d-variate functions (d;?: 3) defined
on a d-simplex, we show in Section 3 that the variation Vs (Bn(f), T) of the
Bernstein polynomial over a tetrahedron is bounded by 2n/(n + 1) times
the variation of its Bezier-net. We also give an example to show that the
constant 2n/(n + 1) is the best possible. In Section 4, we have determined
a bound for VS(Bn(f), T) in case when T is a d-simplex, for arbitrary d.
Finally, we show in Section 5 that an inequality similar to (1.5) holds for
the d-variate case too, except that the constant 2n/(n + 1) is replaced by
nd (n ~ ~11) -I.

We begin with certain definitions, notations, and a result due to Dahmen
and Micchelli [2], which is needed in our subsequent discussions.

2. DEFINITIONS, NOTATIONS, AND SOME PRELIMINARY RESULTS

Let I be a suitably smooth function on a region Q c !R d, We introduce
the following:

V(J, Q) = f IV/I dx,
Q

Vs(J,Q)=f S«(5f)dx.
Q

(2.1 )

(2.2)

Here VI denotes gradient of J, S is a seminorm on !Rq(dl, q(d) = d(d + 1)/2,
x = (XI' ..., x d ) E Q, and (5f is a q(d)-tuple given by af= (fxiX)I,;;; ;';;;j ,;;;d' For
XEQ, we shall write S(x) for S((XiX)I';;;;';;;j,;;;d)' For a function having
discontinuities in its first derivatives across a hyperplane P in Q, we define
the analogue of (1.8) by

Vs(J, P) = S(a) f IVfl - Vf21 ds,
p

(2.3 )

where a is a unit vector orthogonal to the hyperplane P and fl'/2 denote
the restrictions off to either side of P. Then for a function f which belongs
to C2 on Q except having discontinuities in its first derivatives across
certain hyperplanes PI' ..., Pm in Q, its variation over Q may be defined as

m

Vs(J, Q) = V,dJ, Q - (PI U ." U Pm)) + L Vs(J, P,). (2.4)
i= 1



BERNSTEIN POLYNOMIALS ON A TETRAHEDRON 183

Let us consider ad-simplex T with vertices Xi = (x~, ..., x~),
i = 1, ..., d + 1. Denoting by A. = U1, ..., A. d + 1)' the barycentric coordinates
of a point x E T, we introduce the Bernstein polynomial En (f) of lover T
as

(2.5)

where a=(al, ...,ad+1)EZ:+ 1 with !al=:'X1+···+ad+1,G)=
(n!IIl;~ll (aj !», while )"=n;~ll A? ~

We now tum to introduce the d-dimensional analogue ofIn- For this, we
first observe that there is no unique way of defining regular triangulations
in the d-dimensional case. In view of this, we consider the following canoni­
cal way to construct triangulation for an arbitrary d-simplex (d? 2) (cf.
[2, p. 273]). We let q)'d denote the group of all permutations of {I, ..., d},
and for 1t E q)'d' we define the simplex

b,,={UE[O, l]d:u"(l)? ... ?U"(d)}

=[V
O

, ... , vd
],

where V
O = 0, vi = v i - 1 + e"(J), j = 1, ..., d. We note that all the simplexes are

congruent and the simplex bi corresponding to the identity i E i?JId is given
by

We next see that for any positive integer k,

is a triangulation of fJ i (cf. [2, p. 274J), where

Thus for any arbitrary simplex (J E \Rd
, there exists an affine map A: fJ i -+ (J

such that the set Cd. dA) = {A(fJ) : <5 E Cd, d is a triangulation of (J.

For the simplex T, we define the mapping AT by requiring that
AT(0)=xl,AT(el)=x2, A T(e 1 +e2)=x3, A T(e 1 +e2+ '" +ed)=xd+ 1

•

We can now define in as the piecewise linear interpolant of I with respect
to the triangulation Cd. n (A T), interpolating I at the points whose barycen­
tric coordinates are {ajn: 111.1 = n}. The following lemma due to Dahmen
and Micchelli [2, p. 274] is useful in determining Vs(ln' T).
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LEMMA 2.1. For any two simplexes <5 = [Ut, U
2

, ... , U
d + 1] and '8 =

[ii l
,U

2
, ... ,U

d+ 1
] in Cd,k(A T ), there exist vertices UP,uQ Ebn'8 such that

u l
, iii, uP, uQ span a planar parallelogram.

3. BOUND FOR Vs(Bn(f), T) WHEN d= 3

We are now in a position to state the following.

THEOREM 3.1. For any n;:' 1,

(3.1 )

Before we give the proof of the foregoing theorem, we need to introduce
some additional notations which will be required in this section.

We define the following:

t, m, n E {I, 2, 3,4} and i,jE {I, 2, 3}. It may be seen that

VA I = - (J 23 (234), J 31 (234), .1 12 (234) )/6.1,

where J denotes the volume of T. VA i (i = 2, 3, 4) have similar expressions.
For convenience, we shall write VAi=(y~,y~,y~)/6J=yi/6.1, say. We will
also use the notation J i for the area of the face (x i + I, Xi + 2, Xi + 3), i E 1.4
(additive group of integers modulo 4). It can be seen that J i =(1/2) Iii.
We also set

For convenience, we shall write j(rI.) for j(rI./n) in our subsequent discus­
sions. We set EJ(rI.)=j(rI.+e i

), i= 1, 2, 3, 4, where {e i
} is the standard

canonical basis for (R4. Using shift operators E i , we introduce the following:

D I = (E I - £2)(E1 - E4 ),

D 3 = (£3 - E 2 )(£) - E4 ),

D s= (E I - E 4 )(E2- E 3 ),

D2= (E2 - £1 )(E2- E 3 ),

D4 = (£4 - Ed(E4 - E)~,

D 6 = (E 1 - E2)(E4 - E).

(3.2 )

Proof We first determine Vs(in, T). For this, we consider the restric­
tion of in over any two subsimplexes [Ul, u2

, u3, u4
] and [14 1

, u2
, u3

, u4
]

in T. Using Lemma 2,1, we see after some simplifications that the
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magnitude of the change in gradient across the common face [u 2
, u3

, u4
] is

given by

where uP, uq are as in Lemma 2.1 and A(u2
, u3

, u4
) is the area of the

common face.
We note that the common faces between any two simplexes in C 3• n (A T )

lie on planes having six different slopes. Thus the magnitude of change in
gradient ofin across a common face lying on a plane n)'j = Pj' 1~ Pj ~ n - 1
is given by

I(XI =n -2. (3.4 )

We next observe that some of the faces lie on planes which are not of the
type nAj = Pj' These planes are

(AI + )'2)«(X3 + (X4) - (A,3 + A,4)(a l + a2) = 0,

(A2+ A3)(a 1+ a4) - (AI + A,4)((X2 + (X3) = 0,

(3.5)

(3.6 )

for lal = n - 2. For a face lying on a plane of the type (3.5), the magnitude
of the change in gradient ofin is given by

(3.7)

while that across a face of the type (3.6) is given by

(3.8 )

Since "Ii is orthogonal to the face [Xi+l,Xi+2,Xi+3], iE"E 4 , while
i = "II + "1 2 and "1 6 = "1 2 + "1 3 are orthogonal to the planes of the type (3.5)
and (3.6), respectively, we have

Vs(in, T) ~ (1j12nA) L
6

L S("k) IDd(a)l· (3.9)
1,I=n-2 k=l

We next consider Bn (f)x,x
1

, i,j = 1,2, 3. A direct computation gives

where Yj·E=y)E1 +y~E2+y;E3+y;E4' Using the fact that Lk=l "1;=0,
we may express Bn(f)x,x

j
as

(3.10)
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which gives

6

VS(Bn(f), T)::::;;(lj6(n+ 1),1) L L: S(yk) IDkj(cdl. (3.12)
1'1 =n-2 k= I

The last step follows since for lal = n - 2,

fT (n : 2) A' dx = 6LI j (n - 1)n(n + I). (3.13 )

Comparing (3.9) and (3.12), we obtain (3.1).

We now give a simple example to show that Vs(Bn(f), T) can not be
bounded by VS(]n, T), in general. For this, we consider a function j such
that j(x1)=1 and j(xi)=O, i=2,3,4. Also f«x i +xJ )/2)=O. Then
V"(]2, T)=S(yl)/24L1 while VS (B2(f), T)=S(yl)/18L1.

4. BOUND FOR Vs(Bn (f), T) : ARBITRARY d

The following notations will be needed in the present and the next
sections.

For any set K c ~d, vol k K denotes the k-dimensional volume of K
(k ~ d). As in the previous section, we set EJ(a) =f(a + e' ), i = I, ..., d + I,
where {e i

} is the standard canonical basis for ~d + I. We write VA, =
yij(d! ,1). We also write

We note that Iy'l = (d - I)! ,1 I' where ,1 i = vol d _ 1 T i and T i is the face of
the simplex which does not contain the vertex x'. If [u l

, u2
, ... , ud + 1] and

[u I, u2
, ... , ud + 1] are two subsimplexes in Cd n (A T)' then the absolute value

of the change in gradient across the commo~ face [u 2
, ... , ud + I] is given by

where uP, uq are as in Lemma 2.1 and ,1 = VOId T.
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After some calculations, one can see that the variation Vs(!n, T) satisfies

lal=n-21<C;k<m",d+l

(4.1 )

where ,/.j = I/q ~ i + 1 },q. We also have

(n-2)Bn(f)xix,=(n«n-1)!(dl d?) L r.x ),a(y;.E)(Yj·E)f(o:),
lal =n- 2

where y;. E == yJ E 1 + ... + y~+ I Ed + I' Using the fact that 2:Z: \ y; = 0, we
may express Bn(f)xix, as

D f(r.x) yk. myk. m
k, m I)·

l~k<m~d+l

This gives

x
l~k<m~d+l

We thus have

x I

This follows, since for Ir.xl = n,

J(n);..adX=d!d/fI (n+j).
T IX j=1

Combining (4.1) and (4.2), we obtain

THEOREM 4.1. For any function f defined on ad-simplex,

(4.3)
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We now proceed to determine a bound for V(Bn(f), T). Denoting by U,
the subsimplex of T with vertices at (0: + e 1 )/n, (0: + e2 )/n, ..., (0: + ed + 1 )/n,
we set

UIl(T) = U {U, : 10:1 = n -t}.

5. BOUND FOR V(Bn(f), T)

We first determine V(Bn(f), T). We have

for j = 1, ..., d. An application of triangle inequality gives

(5.1 )

We next notice that VA. i = nyi/d! .1, where P,} are the barycentric coor­
dinates of a point with respect to Ua' Using this and (4.3), we obtain

tIVBn(f)! dX~(Il;~: (n+J») lal~-l ct, «Yi. E )f(iX»)2r
2

=(d! nd-l(~11 (n +j)) I,~n Iv, IVjn I dx

=(d!nd-l(~:(n+j») V(jn, Un(T».

This proves the following.

THEOREM 5.1. For any n ~ 1, and any function f defined on T,

V(BIl(f), T)~C(n,d+l)V(jn' T).

It is easy to see that the foregoing theorem remains valid if we replace
V(Bn(f), T) and V(jn' T) by V.~(Bn(f), T) and VS(jn, T), respectively,
where S is a seminorm defined on (Rd and for any suitably smooth
function f,

Vs(f, T)= LS(Vf)dx.
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