Variation Diminishing Properties of Bernstein Polynomials on a Tetrahedron

A. Bhatt and A. Ojha*
Department of Mathematics and Computer Science, R. D. University, Jabalpur 482001, India
Communicated by Allan Pinkus

Recejved April 20, 1992; accepted in revised form April 28, 1993

Abstract

Goodman has recently studied certain variation diminishing properties of Bernstein polynomials on triangles. Introducing analogous definitions for the variation of a trivariate function, we study in the present paper corresponding results for the Bernstein polynomials defined on a tetrahedron. We have also extended these results to arbitrary dimension. 1994 Academic Press, Inc.

1. Introduction

Goodman $[3,4]$ has recently studied certain variation diminishing properties of Bernstein polynomials on triangles. For a bivariate suitably smooth function f defined on a triangle T, he introduced the following definitions as analogues of total variations $V(g,[a, b])$ and $V_{1}(g,[a, b])$ $=V\left(g^{\prime},[a, b]\right)$ of a univariate function g defined on $[a, b]$ and its derivative g^{\prime} :

$$
\begin{align*}
V(f, T) & =\int_{T}|\nabla f| d x \tag{1.1}\\
V_{1}(f, T) & =\int_{T}\left(\left|\nabla f_{x_{1}}\right|^{2}+\left|\nabla f_{x_{2}}\right|^{2}\right) d x \tag{1.2}
\end{align*}
$$

Here $x=\left(x_{1}, x_{2}\right) \in T$ and ∇f denotes the gradient of f, while $f_{x_{j}}$ denotes the partial derivative of f with respect to $x_{j}, j=1,2$. For a function f which does not belong to $C^{2}(T)$ but has discontinuities in the first partial derivatives across a certain line segment ℓ, the variation of f over ℓ was also defined in [3] by

$$
\begin{equation*}
V_{1}(f, \ell)=\int_{\ell}\left|\nabla f_{1}-\nabla f_{2}\right| d x \tag{1.3}
\end{equation*}
$$

[^0]where f_{1} and f_{2} denote the restrictions of f to either side of ℓ. Then for a function f which is C^{2} on T except for having discontinuities in the first derivatives across certain line segments $\ell_{1}, \ldots, \ell_{m}$ in T, its variation over T was defined by
\[

$$
\begin{equation*}
V_{1}(f, T)=V_{1}\left(f, T-\left(\ell_{1} \cup \ell_{2} \cdots \cup \ell_{m}\right)\right)+\sum_{i=1}^{m} V_{1}\left(f, \ell_{i}\right) \tag{1.4}
\end{equation*}
$$

\]

We denote the class of all such functions by $D_{2}(T)$. It has been shown in [3] that for any function f defined on T,

$$
\begin{equation*}
V\left(B_{n}(f), T\right) \leqslant(2 n /(n+1)) V\left(\hat{f}_{n}, T\right) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{1}\left(B_{n}(f), T\right) \leqslant V_{1}\left(\hat{f}_{n}, T\right), \tag{1.6}
\end{equation*}
$$

where $B_{n}(f)$ and \hat{f}_{n}, respectively, denote the nth Bernstein polynomial and nth Bézier net corresponding to f on T.

In a subsequent paper [4], Goodman has considered a generalization of (1.2) by defining

$$
\begin{equation*}
V_{S}(f, T)=\int_{T} S\left(f_{x_{1} x_{1}}, f_{x_{1} x_{2}}, f_{x_{2} x_{2}}\right) d x \tag{1.7}
\end{equation*}
$$

where S is a seminorm on \mathbb{R}^{3} and $f_{x_{i} x_{j}}$ denotes the second partial derivative of f with respect to x_{i}, x_{j}. For a function having discontinuities in the first derivatives across a line segment ℓ, the variation over ℓ has been defined by

$$
\begin{equation*}
V_{S}(f, \ell)=S\left(\mu^{2}, \mu v, v^{2}\right) \int_{\ell}\left|\nabla f_{1}-\nabla f_{2}\right| d x \tag{1.8}
\end{equation*}
$$

where (μ, v) is a unit vector orthogonal to ℓ (cf. [4, p. 299]). Then given a function $f \in D_{2}(T), V_{s}(f, T)$ has been defined as

$$
\begin{equation*}
V_{S}(f, T)=V_{S}\left(f, T-\left(\ell_{1} \cup \cdots \cup \ell_{m}\right)\right)+\sum_{i=1}^{m} V_{S}\left(f, \ell_{i}\right) . \tag{1.9}
\end{equation*}
$$

It may be mentioned here that if we consider $S(x)=\left(x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$, then $V_{S}(f, T)$ reduces to $V_{1}(f, T)$, while $S(x)=\left|x_{1}+x_{3}\right|$ corresponds to $V_{1}^{*}(f, T)$ introduced by Chang and Hoschek [1].

Using the foregoing definitions, Goodman has obtained the following result: For any $n \geqslant 1$ and any function f defined on T,

$$
\begin{equation*}
V_{S}\left(B_{n}(f), T\right) \leqslant V_{S}\left(\hat{f}_{n}, T\right) \tag{1.10}
\end{equation*}
$$

Introducing analogous definitions for d-variate functions $(d \geqslant 3)$ defined on a d-simplex, we show in Section 3 that the variation $V_{S}\left(B_{n}(f), T\right)$ of the Bernstein polynomial over a tetrahedron is bounded by $2 n /(n+1)$ times the variation of its Bézier-net. We also give an example to show that the constant $2 n /(n+1)$ is the best possible. In Section 4, we have determined a bound for $V_{S}\left(B_{n}(f), T\right)$ in case when T is a d-simplex, for arbitrary d. Finally, we show in Section 5 that an inequality similar to (1.5) holds for the d-variate case too, except that the constant $2 n /(n+1)$ is replaced by $n^{d}\binom{n+d-1}{n-1}^{-1}$.

We begin with certain definitions, notations, and a result due to Dahmen and Micchelli [2], which is needed in our subsequent discussions.

2. Definitions, Notations, and Some Preliminary Results

Let f be a suitably smooth function on a region $\Omega \subset \mathbb{R}^{d}$. We introduce the following:

$$
\begin{align*}
V(f, \Omega) & =\int_{\Omega}|\nabla f| d x \tag{2.1}\\
V_{S}(f, \Omega) & =\int_{\Omega} S(\sigma f) d x \tag{2.2}
\end{align*}
$$

Here ∇f denotes gradient of f, S is a seminorm on $\mathbb{R}^{q(d)}, q(d)=d(d+1) / 2$, $x=\left(x_{1}, \ldots, x_{d}\right) \in \Omega$, and σf is a $q(d)$-tuple given by $\sigma f=\left(f_{x_{i} x_{j}}\right)_{1 \leqslant i \leqslant j \leqslant d}$. For $x \in \Omega$, we shall write $S(x)$ for $S\left(\left(x_{i} x_{j}\right)_{1 \leqslant i \leqslant j \leqslant d}\right)$. For a function having discontinuities in its first derivatives across a hyperplane P in Ω, we define the analogue of (1.8) by

$$
\begin{equation*}
V_{S}(f, P)=S(a) \int_{P}\left|\nabla f_{1}-\nabla f_{2}\right| d s \tag{2.3}
\end{equation*}
$$

where a is a unit vector orthogonal to the hyperplane P and f_{1}, f_{2} denote the restrictions of f to either side of P. Then for a function f which belongs to C^{2} on Ω except having discontinuities in its first derivatives across certain hyperplanes P_{1}, \ldots, P_{m} in Ω, its variation over Ω may be defined as

$$
\begin{equation*}
V_{S}(f, \Omega)=V_{S}\left(f, \Omega-\left(P_{1} \cup \cdots \cup P_{m}\right)\right)+\sum_{i=1}^{m} V_{S}\left(f, P_{i}\right) . \tag{2.4}
\end{equation*}
$$

Let us consider a d-simplex T with vertices $x^{i}=\left(x_{1}^{i}, \ldots, x_{d}^{i}\right)$, $i=1, \ldots, d+1$. Denoting by $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)$, the barycentric coordinates of a point $x \in T$, we introduce the Bernstein polynomial $B_{n}(f)$ of f over T as

$$
\begin{equation*}
B_{n}(f)(\lambda)=\sum_{|\alpha|=n}\binom{n}{\alpha} f(\alpha / n) \lambda^{\alpha} \tag{2.5}
\end{equation*}
$$

where $\quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{d+1}\right) \in \mathbb{Z}_{+}^{d+1} \quad$ with $\quad|\alpha|=\alpha_{1}+\cdots+\alpha_{d+1},\binom{n}{\alpha}=$ $\left(n!/ \prod_{j=1}^{d+1}\left(\alpha_{j}!\right)\right.$), while $\lambda^{\alpha}=\prod_{j=1}^{d+1} \lambda_{j}^{\alpha_{j}}$.

We now turn to introduce the d-dimensional analogue of \hat{f}_{n}. For this, we first observe that there is no unique way of defining regular triangulations in the d-dimensional case. In view of this, we consider the following canonical way to construct triangulation for an arbitrary d-simplex $(d \geqslant 2)$ (cf. [2, p. 273]). We let \mathscr{P}_{d} denote the group of all permutations of $\{1, \ldots, d\}$, and for $\pi \in \mathscr{P}_{d}$, we define the simplex

$$
\begin{aligned}
\delta_{\pi} & =\left\{u \in[0,1]^{d}: u_{\pi(1)} \geqslant \cdots \geqslant u_{\pi(d)}\right\} \\
& =\left[v^{0}, \ldots, v^{d}\right],
\end{aligned}
$$

where $v^{0}=0, v^{j}=v^{j-1}+e^{\pi(j)}, j=1, \ldots, d$. We note that all the simplexes are congruent and the simplex δ_{i} corresponding to the identity $i \in \mathscr{P}_{d}$ is given by

$$
\begin{aligned}
\delta_{i} & =\left\{u \in[0,1]^{d}: u_{1} \geqslant \cdots \geqslant u_{d}\right\} \\
& =\left[0, e^{1}, e^{1}+e^{2}, \ldots, e^{1}+e^{2}+\cdots+e^{d}\right] .
\end{aligned}
$$

We next see that for any positive integer k,

$$
C_{d, k}=\left\{\delta / k: \delta \in K_{d}, \delta \subset k \delta_{i}\right\}
$$

is a triangulation of δ_{i} (cf. [2, p. 274]), where

$$
K_{d}=\left\{\delta_{\pi}+\alpha: \alpha \in \mathbb{Z}^{d}, \pi \in \mathscr{P}_{d}\right\} .
$$

Thus for any arbitrary simplex $\sigma \in \mathbb{R}^{d}$, there exists an affine map $A: \delta_{i} \rightarrow \sigma$ such that the set $C_{d, k}(A)=\left\{A(\delta): \delta \in C_{d, k}\right\}$ is a triangulation of σ. For the simplex T, we define the mapping A_{T} by requiring that $A_{T}(0)=x^{1}, A_{T}\left(e^{1}\right)=x^{2}, A_{T}\left(e^{1}+e^{2}\right)=x^{3}, A_{T}\left(e^{1}+e^{2}+\cdots+e^{d}\right)=x^{d+1}$. We can now define \hat{f}_{n} as the piecewise linear interpolant of f with respect to the triangulation $C_{d, n}\left(A_{T}\right)$, interpolating f at the points whose barycentric coordinates are $\{\alpha / n:|\alpha|=n\}$. The following lemma due to Dahmen and Micchelli [2, p. 274] is useful in determining $V_{S}\left(\hat{f}_{n}, T\right)$.

Lemma 2.1. For any two simplexes $\delta=\left[u^{1}, u^{2}, \ldots, u^{d+1}\right]$ and $\tilde{\delta}=$ $\left[\tilde{u}^{1}, u^{2}, \ldots, u^{d+1}\right]$ in $C_{d, k}\left(A_{T}\right)$, there exist vertices $u^{p}, u^{q} \in \delta \cap \widetilde{\delta}$ such that $u^{1}, \tilde{u}^{1}, u^{p}, u^{q}$ span a planar parallelogram.

3. BOUND FOR $V_{S}\left(B_{n}(f), T\right)$ WHEN $d=3$

We are now in a position to state the following.
Theorem 3.1. For any $n \geqslant 1$,

$$
\begin{equation*}
V_{S}\left(B_{n}(f), T\right) \leqslant(2 n /(n+1)) V_{S}\left(\hat{f}_{n}, T\right) \tag{3.1}
\end{equation*}
$$

Before we give the proof of the foregoing theorem, we need to introduce some additional notations which will be required in this section.

We define the following:

$$
\Delta_{i j}(l m n)=\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{i}^{l} & x_{i}^{m} & x_{i}^{n} \\
x_{j}^{l} & x_{j}^{m} & x_{j}^{n}
\end{array}\right|
$$

$l, m, n \in\{1,2,3,4\}$ and $i, j \in\{1,2,3\}$. It may be seen that

$$
\nabla \lambda_{1}=-\left(\Delta_{23}(234), \Delta_{31}(234), \Delta_{12}(234)\right) / 6 \Delta,
$$

where Δ denotes the volume of $T . \nabla \lambda_{i}(i=2,3,4)$ have similar expressions. For convenience, we shall write $\nabla \lambda_{i}=\left(\gamma_{1}^{i}, \gamma_{2}^{i}, \gamma_{3}^{i}\right) / 6 A=\gamma^{i} / 6 A$, say. We will also use the notation Δ_{i} for the area of the face ($x^{i+1}, x^{i+2}, x^{i+3}$), $i \in \mathbb{Z}_{4}$ (additive group of integers modulo 4). It can be seen that $\Delta_{i}=(1 / 2)\left|\gamma^{i}\right|$. We also set

$$
\gamma^{5}=\gamma^{1}+\gamma^{2}, \quad \gamma^{6}=\gamma^{2}+\gamma^{3}
$$

For convenience, we shall write $f(\alpha)$ for $f(\alpha / n)$ in our subsequent discussions. We set $E_{i} f(\alpha)=f\left(\alpha+e^{i}\right), i=1,2,3,4$, where $\left\{e^{i}\right\}$ is the standard canonical basis for \mathbb{R}^{4}. Using shift operators E_{i}, we introduce the following:

$$
\begin{array}{ll}
D_{1}=\left(E_{1}-E_{2}\right)\left(E_{1}-E_{4}\right), & D_{2}=\left(E_{2}-E_{1}\right)\left(E_{2}-E_{3}\right), \\
D_{3}=\left(E_{3}-E_{2}\right)\left(E_{3}-E_{4}\right), & D_{4}=\left(E_{4}-E_{1}\right)\left(E_{4}-E_{3}\right), \tag{3.2}\\
D_{5}=\left(E_{1}-E_{4}\right)\left(E_{2}-E_{3}\right), & D_{6}=\left(E_{1}-E_{2}\right)\left(E_{4}-E_{3}\right) .
\end{array}
$$

Proof. We first determine $V_{S}\left(\hat{f}_{n}, T\right)$. For this, we consider the restriction of \hat{f}_{n} over any two subsimplexes $\left[u^{1}, u^{2}, u^{3}, u^{4}\right]$ and $\left[\tilde{u}^{1}, u^{2}, u^{3}, u^{4}\right]$ in T. Using Lemma 2.1 , we see after some simplifications that the
magnitude of the change in gradient across the common face $\left[u^{2}, u^{3}, u^{4}\right]$ is given by

$$
\begin{equation*}
n^{3}\left|f\left(u^{1}\right)+f\left(\tilde{u}^{1}\right)-f\left(u^{p}\right)-f\left(u^{q}\right)\right| \Delta\left(u^{2}, u^{3}, u^{4}\right) / 3 \Delta \tag{3.3}
\end{equation*}
$$

where u^{p}, u^{q} are as in Lemma 2.1 and $\Delta\left(u^{2}, u^{3}, u^{4}\right)$ is the area of the common face.

We note that the common faces between any two simplexes in $C_{3, n}\left(A_{T}\right)$ lie on planes having six different slopes. Thus the magnitude of change in gradient of \hat{f}_{n} across a common face lying on a plane $n \lambda_{j}=\beta_{j}, 1 \leqslant \beta_{j} \leqslant n-1$ is given by

$$
\begin{equation*}
n\left|D_{j} f(\alpha)\right| A_{j} / 3 \Delta, \quad|\alpha|=n-2 . \tag{3.4}
\end{equation*}
$$

We next observe that some of the faces lie on planes which are not of the type $n \lambda_{j}=\beta_{j}$. These planes are

$$
\begin{align*}
& \left(\lambda_{1}+\lambda_{2}\right)\left(\alpha_{3}+\alpha_{4}\right)-\left(\lambda_{3}+\lambda_{4}\right)\left(\alpha_{1}+\alpha_{2}\right)=0 \tag{3.5}\\
& \left(\lambda_{2}+\lambda_{3}\right)\left(\alpha_{1}+\alpha_{4}\right)-\left(\lambda_{1}+\lambda_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)=0 \tag{3.6}
\end{align*}
$$

for $|\alpha|=n-2$. For a face lying on a plane of the type (3.5), the magnitude of the change in gradient of \hat{f}_{n} is given by

$$
\begin{equation*}
n\left|D_{s} f(\alpha)\right|\left|\gamma^{5}\right| / 6 \Delta, \tag{3.7}
\end{equation*}
$$

while that across a face of the type (3.6) is given by

$$
\begin{equation*}
n\left|D_{6} f(\alpha)\right|\left|\gamma^{6}\right| / 6 \Delta \tag{3.8}
\end{equation*}
$$

Since γ^{i} is orthogonal to the face $\left[x^{i+1}, x^{i+2}, x^{i+3}\right], i \in \mathbb{Z}_{4}$, while $\gamma^{5}=\gamma^{2}+\gamma^{2}$ and $\gamma^{6}=\gamma^{2}+\gamma^{3}$ are orthogonal to the planes of the type (3.5) and (3.6), respectively, we have

$$
\begin{equation*}
V_{S}\left(\hat{f}_{n}, T\right) \geqslant(1 / 12 n \Delta) \sum_{|\alpha|=n-2} \sum_{k=1}^{6} S\left(\gamma^{k}\right)\left|D_{k} f(\alpha)\right| . \tag{3.9}
\end{equation*}
$$

We next consider $B_{n}(f)_{x_{i, x}}, i, j=1,2,3$. A direct computation gives

$$
B_{n}(f)_{x_{i} x_{j}}=\left(n(n-1) / 364^{2}\right) \sum_{|\alpha|=n-2}\binom{n-2}{\alpha} \lambda^{\alpha}\left(\gamma_{i} \cdot E\right)\left(\gamma_{j} \cdot E\right) f(\alpha),
$$

where $\gamma_{i} \cdot E=\gamma_{i}^{1} E_{1}+\gamma_{i}^{2} E_{2}+\gamma_{i}^{3} E_{3}+\gamma_{i}^{4} E_{4}$. Using the fact that $\sum_{k=1}^{4} \gamma_{j}^{k}=0$, we may express $B_{n}(f)_{x_{i} x_{j}}$ as

$$
\begin{equation*}
B_{n}(f)_{x_{i} x_{j}}=\left(n(n-1) / 36 \Delta^{2}\right) \sum_{|x|=n-2}\binom{n-2}{\alpha} \lambda^{\alpha} \sum_{k=1}^{6} \gamma_{i}^{k} \gamma_{j}^{k} D_{k} f(\alpha) . \tag{3.10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S\left(\sigma B_{n}(f)\right) \leqslant\left(n(n-1) / 36 A^{2}\right) \sum_{|\alpha|=n-2}\binom{n-2}{\alpha} \lambda^{\alpha} \sum_{k=1}^{6} S\left(\gamma^{k}\right)\left|D_{k} f(\alpha)\right|, \tag{3.11}
\end{equation*}
$$

which gives

$$
\begin{equation*}
V_{S}\left(B_{n}(f), T\right) \leqslant(1 / 6(n+1) \Delta) \sum_{|\alpha|=n-2} \sum_{k=1}^{6} S\left(\gamma^{k}\right)\left|D_{k} f(\alpha)\right| \tag{3.12}
\end{equation*}
$$

The last step follows since for $|\alpha|=n-2$,

$$
\begin{equation*}
\int_{T}\binom{n-2}{\alpha} \lambda^{\alpha} d x=6 \Delta /(n-1) n(n+1) \tag{3.13}
\end{equation*}
$$

Comparing (3.9) and (3.12), we obtain (3.1).
We now give a simple example to show that $V_{S}\left(B_{n}(f), T\right)$ can not be bounded by $V_{S}\left(\hat{f}_{n}, T\right)$, in general. For this, we consider a function f such that $f\left(x^{1}\right)=1$ and $f\left(x^{i}\right)=0, \quad i=2,3,4$. Also $f\left(\left(x^{i}+x^{j}\right) / 2\right)=0$. Then $V_{S}\left(f_{2}, T\right)=S\left(\gamma^{1}\right) / 24 \Delta$ while $V_{S}\left(B_{2}(f), T\right)=S\left(\gamma^{1}\right) / 18 \Delta$.

4. Bound for $V_{S}\left(B_{n}(f), T\right)$: Arbitrary d

The following notations will be needed in the present and the next sections.

For any set $K \subset \mathbb{R}^{d}$, vol $_{k} K$ denotes the k-dimensional volume of K $(k \leqslant d)$. As in the previous section, we set $E_{i} f(\alpha)=f\left(\alpha+e^{i}\right), i=1, \ldots, d+1$, where $\left\{e^{i}\right\}$ is the standard canonical basis for \mathbb{R}^{d+1}. We write $\nabla \lambda_{i}=$ $\gamma^{i} /(d!A)$. We also write

$$
D_{i, j}=-\left(E_{i}-E_{i+1}\right)\left(E_{j}-E_{j+1}\right), \quad 1 \leqslant i<j \leqslant d+1, \quad E_{d+2}=E_{1}
$$

We note that $\left|\gamma^{i}\right|=(d-1)!A_{i}$, where $\Delta_{i}=\operatorname{vol}_{d-1} T_{i}$ and T_{i} is the face of the simplex which does not contain the vertex x^{i}. If $\left[u^{1}, u^{2}, \ldots, u^{d+1}\right]$ and $\left[\tilde{u}^{1}, u^{2}, \ldots, u^{d+1}\right]$ are two subsimplexes in $C_{d, n}\left(A_{T}\right)$, then the absolute value of the change in gradient across the common face $\left[u^{2}, \ldots, u^{d+1}\right]$ is given by

$$
\left(n^{d} / d \Delta\right)\left|f\left(u^{1}\right)+f\left(\tilde{u}^{1}\right)-f\left(u^{p}\right)-f\left(u^{q}\right)\right| \operatorname{vol}_{d-1}\left[u^{2}, \ldots, u^{d+1}\right]
$$

where u^{p}, u^{4} are as in Lemma 2.1 and $A=\operatorname{vol}_{d} T$.

After some calculations, one can see that the variation $V_{S}\left(\hat{f}_{n}, T\right)$ satisfies

$$
\begin{equation*}
V_{S}\left(\hat{f}_{n}, T\right) \geqslant\left(1 / d!(d-1)!\Delta n^{d-2}\right) \sum_{|\alpha|=n-2} \sum_{1 \leqslant k<m \leqslant d+1}\left|D_{k, m} f(\alpha)\right| S\left(\gamma^{k, m}\right) \tag{4.1}
\end{equation*}
$$

where $\gamma^{i, j}=\sum_{q=i+1}^{j} \gamma^{4}$. We also have

$$
B_{n}(f)_{x_{i} x j}=\left(n((n-1))(d!\Delta)^{2}\right) \sum_{|\alpha|=n-2}\binom{n-2}{\alpha} \lambda^{\alpha}\left(\gamma_{i} \cdot E\right)\left(\gamma_{j} \cdot E\right) f(\alpha),
$$

where $\gamma_{i} \cdot E=\gamma_{i}^{1} E_{1}+\cdots+\gamma_{i}^{d+1} E_{d+1}$. Using the fact that $\sum_{k=1}^{d+1} \gamma_{j}^{k}=0$, we may express $B_{n}(f)_{x_{i} x_{j}}$ as

$$
\begin{aligned}
B_{n}(f)_{x_{i} x_{j}}= & \left(n(n-1) /(d!\Delta)^{2}\right) \sum_{|\alpha|=n-2}\binom{n-2}{\alpha} \\
& \times \lambda^{\alpha} \sum_{1 \leqslant k<m \leqslant d+1} D_{k, m} f(\alpha) \gamma_{i}^{k, m} \gamma_{j}^{k, m} .
\end{aligned}
$$

This gives

$$
\begin{aligned}
S\left(\sigma B_{n}(f)\right) \leqslant & \left(n(n-1) /(d!\Delta)^{2}\right) \sum_{|\alpha|=n-2}\binom{n-2}{\alpha} \lambda^{\alpha} \\
& \times \sum_{1 \leqslant k<m \leqslant d+1}\left|D_{k, m} f(\alpha)\right| S\left(\gamma^{k, m}\right)
\end{aligned}
$$

We thus have

$$
\begin{align*}
V_{S}\left(B_{n}(f), T\right) \leqslant & \left(1 / d!\Delta \prod_{j=1}^{d-2}(n+j)\right) \\
& \times \sum_{|\alpha|=n-2} \sum_{1 \leqslant k<m \leqslant d+1}\left|D_{k, m} f(\alpha)\right| S\left(\gamma^{k, m}\right) . \tag{4.2}
\end{align*}
$$

This follows, since for $|\alpha|=n$,

$$
\begin{equation*}
\int_{T}\binom{n}{\alpha} \lambda^{\alpha} d x=d!\Delta / \prod_{j=1}^{d}(n+j) \tag{4.3}
\end{equation*}
$$

Combining (4.1) and (4.2), we obtain
Theorem 4.1. For any function f defined on a d-simplex,

$$
V_{S}\left(B_{n}(f), T\right) \leqslant C(n, d) V_{S}\left(\hat{f}_{n}, T\right)
$$

where $C(n, d)=n^{d-1}\binom{n+d-2}{n-1}^{-1}$.

We now proceed to determine a bound for $V\left(B_{n}(f), T\right)$. Denoting by U_{α} the subsimplex of T with vertices at $\left(\alpha+e^{1}\right) / n,\left(\alpha+e^{2}\right) / n, \ldots,\left(\alpha+e^{d+1}\right) / n$, we set

$$
U_{n}(T)=\bigcup\left\{U_{x}:|\alpha|=n-1\right\} .
$$

5. BOUND FOR $V\left(B_{n}(f), T\right)$

We first determine $V\left(B_{n}(f), T\right)$. We have

$$
\begin{equation*}
B_{n}(f)_{x_{j}}=(n / d!\Delta) \sum_{|\alpha|=n-1}\binom{n-1}{\alpha} \lambda^{\alpha}\left(\gamma_{j} \cdot E\right) f(\alpha) \tag{5.1}
\end{equation*}
$$

for $j=1, \ldots, d$. An application of triangle inequality gives

$$
\left|\nabla B_{n}(f)\right| \leqslant(n / d!\Delta) \sum_{|x|=n-1}\binom{n-1}{\alpha} \lambda^{x}\left(\sum_{i=1}^{d}\left(\left(\gamma_{i} \cdot E\right) f(\alpha)\right)^{2}\right)^{1 / 2}
$$

We next notice that $\nabla \lambda_{i}=n \gamma^{i} d!\Delta$, where $\left\{\lambda_{i}\right\}$ are the barycentric coordinates of a point with respect to U_{α}. Using this and (4.3), we obtain

$$
\begin{aligned}
\int_{T}\left|\nabla B_{n}(f)\right| d x & \leqslant\left(1 / \prod_{j=1}^{d-1}(n+j)\right) \sum_{|x|=n-1}\left(\sum_{i=1}^{d}\left(\left(y_{i} \cdot E\right) f(x)\right)^{2}\right)^{1 / 2} \\
& =\left(d!n^{d-1} / \prod_{j=1}^{d-1}(n+j)\right) \sum_{|x|=n} \int_{U_{x}}\left|\nabla \hat{f}_{n}\right| d x \\
& =\left(d!n^{d-1} / \prod_{j=1}^{d-1}(n+j)\right) V\left(\hat{f}_{n}, U_{n}(T)\right)
\end{aligned}
$$

This proves the following.

Theorem 5.1. For any $n \geqslant 1$, and any function f defined on T,

$$
V\left(B_{n}(f), T\right) \leqslant C(n, d+1) V\left(\hat{f}_{n}, T\right)
$$

It is easy to see that the foregoing theorem remains valid if we replace $V\left(B_{n}(f), T\right)$ and $V\left(\hat{f}_{n}, T\right)$ by $V_{S}\left(B_{n}(f), T\right)$ and $V_{\tilde{S}}\left(\hat{f}_{n}, T\right)$, respectively, where \tilde{S} is a seminorm defined on \mathbb{R}^{d} and for any suitably smooth function f,

$$
V_{\mathcal{S}}(f, T)=\int_{T} \tilde{S}(\nabla f) d x
$$

Acknowledgments

Our grateful thanks are due to Professor H. P. Dikshit, Pro Vice-Chancellor, Indira Gandhi National Open University, Delhi, for his kind encouragement and several helpful discussions. We are also grateful to the referee for suggesting a correction in the proof of Theorem 5.1 in the original version of this paper.

References

1. G. Chang and J. Hoschek, Convexity and variation diminishing properties of Bernstein polynomials over triangles, in "Multivariate Approximation Theory III" (W. Schempp and K. Zeller, Eds.), pp. 198-205, Birkhäuser-Verlag, 1985.
2. W. Dahmen and C. A. Micchelll, Convexity of multivariate Bernstein polynomials and box spline surfaces, Stud. Sci. Math. Hungar. 23 (1988), 265-287.
3. T. N.T. Goodman, Variation diminishing properties of Bernstein polynomials on triangles, J. Approx. Theory. 50 (1987), 111-126.
4. T. N. T. Goodman, Further variation diminishing properties of Bernstein polynomials on triangles, Constr. Approx. 3 (1987), 297-305.

[^0]: * Work of this author was supported by the University Grants Commission, India, under Grant F8-4/91(RBB-II).

